Propositional and Predicate Logic
Lecture
The topics from the lecture will be covered in the lecture notes (GitHub repository, pdf). These were written last year and some small changes may happen this year. If you find any errors in the lecture notes, or if you believe some parts could be explained better, let me know.
You may also be interested in the presentations and other information from last year on Petr Gregor's web.
Past Lectures
This is the log of past lectures. "LN" refers to the lecture notes mentioned above.
Date  Topic 

October 4, 2018  Introduction, propositional logic  formulas (LN pages 113) 
October 11, 2018  Propositional logic  formulas, models, normal forms (LN pages 1317) 
October 18, 2018  Propositional logic  normal forms, theories, SAT solvers (glucose) (LN pages 1718) 
October 25, 2018  Propositional logic  theories, analysis of finite theories, 2SAT (LN pages 1821) 
November 1, 2018  Propositional logic  tableau method, soundness, completeness (LN pages 2329) 
November 8, 2018  Compactness. Resolution method  soundness and completeness, linear resolution (LN pages 2935) 
November 15, 2018  Completeness of LI resolution for Horn formulas, introduction to predicate logic  basic syntax (LN pages 3544) 
November 22, 2018  Open Day  lecture cancelled 
November 29, 2018  Predicate logic  semantics, theories, substructures (LN pages 4449) 
December 6, 2018  Predicate logic  tableau method, systematic tableau (LN pages 5155) 
December 13, 2018  Predicate logic  theorem on constants, soundness and completeness of tableau method (LN 5559) 
Exam
The exam consists of an exam test and an oral exam. A prerequisite for the exam is the credit from the seminar. Details will be added later.
The exam test covers most of the topics we did during the lecture/seminar except
 Hilbert's systems (neither at oral exam)
 LD, SLD resolution, SLD trees (neither at oral exam)
 Programs in Prolog (neither at oral exam)
 (Un)decidability and incompleteness
Some examples of the test are available on Petr Gregor's web from past years.
Oral exam takes approximately 20 minutes and contains definitions, algorithms and constructions, statements of theorems, and a proof of a specified theorem or lemma.
The proof of the following lemmas/theorems are at the oral exam:
 Cantor’s theorem (Theorem 1), König’s lemma (Lemma 1).
 Algorithms for 2SAT (Theorem 3) and HornSAT (correctness) (page 21 in LN).
 Tableau method in propositional logic: systematic tableau (being finished, finiteness) (page 27), soundness (Theorem 4), completeness (Theorem 5), compactness (Theorem 6), corollaries (pages 30).
 Resolution in propositional logic: soundness (Theorem 7), completeness (Theorem 8), LIresolution (completeness for Horn clauses) (Theorem 9).
 Semantics of predicate logic: theorem on constants (Theorem 10), open theories (page 48), deduction theorem (page 59).
 Tableau method in predicate logic: systematic tableau (finished, finite) (page 55), role of axioms of equality (pages 5556), soundness (Theorem 11), canonical model (with equality) (page 58), completeness (Theorem 12).
 LöwenheimSkolem theorem (Theorem 13). Compactness theorem and corollaries (Theorem 14 + page 60).
 Extensions by definitions (page 61), Skolem’s theorem (Theorem 15), Herbrand’s theorem (Theorem 16).
 Elementary equivalence, isomorphism and semantics. Corrolaries of LöwenheimSkolem theorem (pages 7475).
 ωcategoricity (Theorem 19).
 Conditions for open (page 79) and finite axiomatizability (Theorem 20).
 Invariance of definable sets to automorphisms (Lemma 12).
Note: The numbers of Theorems and Lemmas correspond to the lecture notes. The page numbers reference the pages in the lecture notes, where the propositions/observations/corollaries that are not explicitly labeled as a "lemma" or a "theorem" are mentioned and proved in the notes. The references should help you to find the specific theorem/lemma/... in the lecture notes, however, you should still understand the rest of the lecture. You should know all the definitions, lemmas and theorems mentioned in the lecture notes but other proofs are not required. For example, you should know how resolution in predicate logic works and be able to define/describe it, even though it is not mentioned in the list above, but you do not need to know the proof of its soundness and completeness.
Additional reading
 A. Nerode, R. A. Shore, Logic for Applications, Springer, 2nd edition, 1997.
 P. Pudlák, Logical Foundations of Mathematics and Computational Complexity  A Gentle 3. Introduction, Springer, 2013.
 J. R. Shoenfield, Mathematical Logic, A. K. Peters, 2001.
 W. Hodges, Shorter Model Theory, Cambridge University Press, 1997.
 W. Rautenberg, A concise introduction to mathematical logic, Springer, 2009.
Seminar
Credit requirements
There will be two tests during the term (one on propositional and one on predicate logic). It will be possible to get 10 points for each test. There will also be 3 homework assignments, each for 2 points. In order to obtain the credit for the seminar (which is required before you can take the exam), you need to obtain at least 16 points.
Homeworks

kcolorable graphs and SAT  deadline October 31, in the evening, see linked zip for details.

propositional logic  deadline is November 13, in the evening, see the linked pdf for questions

predicate logic  deadline is January 3, before the seminar, see the linked pdf for questions
Exercises from the seminar
We will mostly use the exercises from Petr Gregor's seminar.
Date  Topic 

October 4, 2018  Introduction, syntax vs. semantics, propositional formulas vs firstorder and higherorder formulas (PG seminar 1, exercise 12) 
October 11, 2018  Formulas with a given meaning in propositional, and firstorder languages, adequacy of sets of connectives, CNF and DNF using models (PG seminar 1, ex. 3, 5, 6, and seminar 2, ex. 5, 6) 
October 18, 2018  Adequacy, CNF and DNF, HornSAT (PG seminar 2) 
October 25, 2018  Implication graph (PG seminar 3, ex. 3, 5, and 9) 
November 1, 2018  Tableau method in propositional logic (PG seminar 4, ex. 35) 
November 8, 2018  Compactness. Resolution (PG seminar 5, ex. 4, 5, 6a, 8) 
November 15, 2018  LIresolution, Hilbert calculus, basics of syntax in predicate logic. (PG seminar 6, ex. 1, 46) 
November 22, 2018  Open Day  seminar cancelled 
November 29, 2017  First test 
December 6, 2017  Semantics of predicate logic, structures, substructures (PG seminar 7, ex. 48) 
December 13, 2017  Structures, substructures, tableau method in predicate logic (PG seminar 8, ex. 911, and seminar 9, ex. 2 and 4) 